
Solutions for Stat 512 — Take home exam V

1. Seasonal ranges (in hectares) for alligators were monitored on a lake outside Gainesville, Florida, by biologists
from the Florida Game and Fish Commoission. Five alligators monitored in the spring showed ranges of 7.8, 12.3,
8.3, 18.4 and 31. Four different alligators monitored in the summer showed ranges of 102.3, 81, 55.2 and 51.
Estimate the difference between mean spring summer ranges, with a 95% confidence interval. (10 pts) Hint: you
can use the following code in R to get S2

1 and S2
2 : (10 pts)

data1<-c(7.8, 12.3, 8.3, 18.4,31)
#######S1-square#########
var(data1)
data2<-c(102.3, 81, 55.2, 51)
#######S2-square#########
var(data2)

Solution:

Since n1 = 5 and n2 = 4, we can not use large sample CI formula here. Now,

S2
1 = 92.503, Ȳ1 = 15.56

S2
2 = 573.9225, Ȳ2 = 72.375

=⇒ S2
P =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
= 298.8257

=⇒ Sp =
√

298.8257 = 17.287

Hence, the 95% CI for µ1 − µ2 is:

Ȳ1 − Ȳ2 ± tn1+n2−2,α/2 · SP ·
√

1

n1
+

1

n2

= 15.59− 72.375± 2.364 ∗ 17.287 ∗
√

1

5
+

1

4

= (−78.79,−34.84)

********************************************************************************************

2. Suppose Y1, . . . , Yn ∼ Poisson(λ).

a. Show that Ȳ is an efficient estimator of λ using CRLB. (5 pts)

b. Find the MLE for λ. (5 pts)
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Solution:

For part (a), let’s first find out the Fisher information number:

f(y|θ) =
e−λλy

y!

=⇒ logf(y|θ) = −λ+ ylogλ− log(y!)

=⇒ ∂

∂λ
logf(y|θ) = −1 +

y

λ

=⇒
(
∂

∂λ
logf(y|θ)

)2

=
y2

λ2
− 2y

λ
+ 1

=⇒ E

(
∂

∂λ
logf(y|θ)

)2

=
Ey2

λ2
− 2E(y)

λ
+ 1 =

λ+ λ2

λ2
− 2λ

λ
+ 1 =

1

λ

=⇒ I(λ) = nE

(
∂

∂λ
logf(y|θ)

)2

=
n

λ

Hence CRLB =
1

I(λ)
=

1

n/λ
=
λ

n
. It is well known that V ar(Ȳ ) =

λ

n
, which means Ȳ is an efficient estimator

of λ.

For part (b),

L(λ|y) =
e−nλλ

∑
yi∏

yi!

=⇒ l(λ|y) = logL(λ|y) = −nλ+ logλ
∑

yi − log
∏

yi!

=⇒ ∂

∂λ
l(λ|y) = −n+

∑
yi
λ

set
= 0

=⇒ λ̂ =

∑
yi
n

= Ȳ (
∂2

∂λ2
l(λ|y) = −

∑
yi

λ2
< 0)

Hence the MLE of λ is Ȳ .

********************************************************************************************

3. Suppose Y1, . . . , Yn is a random sample from the pdf

f(y|θ) = θy−2, 0 < θ ≤ y <∞

a. What is a sufficient statistic for θ? Hint: use Factorization Theorem. (5 pts)

b. Use Maximum Likelihood Method to obtain an estimator for θ, denoted is as θ̂. (5 pts)
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c. Use moment method to obtain an estimator for θ, denoted is as θ̃. Hint: It is possible that it does not exist.
(5 pts)

Solution:

For part (a), the joint likelihood is:

L(θ|y) = θn

(
n∏
i=1

yi

)−2
I{y(1)≥θ}

Based on Factorization Thm, Y(1) is sufficient for θ.

For part (b), since the likelihood is increasing in θ. Hence L(θ|y) can be maximized at the maximum value θ can
take, Y(1).

For part (c), in order to figure our the method of moment estimator, we need to calculate E(Y):

E(Y ) =

∫ ∞
θ

θ

y
dy = θln(y)

∣∣∣∣∞
θ

=∞

Hence, mean of Y does not exist implies method of moment estimator does not exist.

********************************************************************************************

4. Let Y1, . . . , Yn be i.i.d with pdf:

f(y|θ) = θyθ−1, , 0 ≤ y ≤ 1, , 0 < θ <∞

a. Prove the MLE of θ is θ̂ =
n∑
−log(yi)

. (10 pts)

b. Is the MLE in part (a) biased? Hint: Find out the distribution of −log(yi) first. (10 pts)

c. Find the method of moments estimator for θ. (5 pts)

d. Find a complete sufficient statistic for θ. (10 pts)

e. Find the MVUE for θ. (10 pts)

Solution:
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For part (a),

L(θ|y) = θn
(∏

yi

)θ−1
=⇒ l(θ|y) = log(L(θ|y)) = nlogθ + (θ − 1)log

(∏
yi

)
=⇒ ∂

∂θ
l(θ|y) =

n

θ
+ log

(∏
yi

)
set
= 0

=⇒ θ̂ =
n

−log (
∏
yi)

=
n

−
∑
log(yi)

=
n∑
−log(yi)

(
∂2

∂θ2
l(θ|y) = − n

θ2
< 0

)
Hence, MLE for θ is θ̂ =

n∑
−log(yi)

.

For part (b), using transformation technique, −log(yi) ∼ exp(
1

θ
), hence

∑
−log(yi) ∼ Gamma(n,

1

θ
). Now, let

U =
∑
−log(yi) , let’s find out E(

n

U
):

E
( n
U

)
=

∫ ∞
0

n

u
· 1

Γ(n)

(
1

θ

)nun−1e−uθdu
=

n

Γ(n)

(
1

θ

)n ∫ ∞
0

u(n−1)−1e−uθdu

=
n

Γ(n)

(
1

θ

)n · Γ(n− 1)

(
1

θ

)n−1

=
nθ

n− 1
6= θ

Hence, the MLE is biased.

For part (c),

E(Y ) =

∫ 1

0
θyθdy =

θ

θ + 1
yθ+1

∣∣∣∣1
0

=
θ

θ + 1

Hence, set E(Y ) = Ȳ implies
θ

θ + 1
= Ȳ =⇒ θ̃ =

Ȳ

1− Ȳ
.

For part (d), the pdf can be viewed alternatively:

f(y|θ) = θe(θ−1)log(y)I{0≤y≤1}, θ > 0
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Clearly this distribution is a member of exponential distribution, hence,
∑
log(yi) is complete sufficient statistic.

For part (e), we see that the MLE of θ: θ̂ =
n∑
−log(yi)

is a function of complete sufficient statistic
∑
log(yi).

SinceE
(

n∑
−log(yi)

)
=

nθ

n− 1
, simple algebra and Lehmann-Scheffe Thm indicates that

n− 1

n
θ̂ =

n− 1∑
−log(yi)

is the MVUE for θ.

********************************************************************************************

5. Let Y1, . . . , Yn be a random sample from the pdf f(y|µ) = e−(y−µ), where −∞ < µ < y <∞.

a. Show that Y(1) = min(Y1, . . . , Yn) is a complete sufficient statistic. Hint: You will see that Y(1) is not a
member of exponential family. So first prove it is sufficient, then prove it is complete. (10 pts)

b. Find the MVUE for µ. (10 pts)

Solution:

For part (a),

L(µ|y) = e−
∑
yienµI{Y(1)>µ}

By Factorization Thm, Y(1) is sufficient statistic for µ. Now let’s prove it is also complete using definition of
completeness. The distribution of Y(1) is:

fY(1)(y) = ne−n(y−µ)I{y>µ}

Now,

E[g(Y(1))] =

∫ ∞
µ

g(y)ne−n(y−µ)dy = 0

=⇒
∫ ∞
µ

g(y)e−nydy = 0 for all µ

=⇒ ∂

∂µ

[∫ ∞
µ

g(y)e−nydy

]
= 0 for all µ

=⇒ −g(µ)e−nµ = 0 for all µ

This implied P (g(µ) = 0) = 1. Hence, Y(1) is complete and sufficient statistic.

For part (b), it is very easy to prove that E(Y(1)) = µ +
1

n
. Hence, Y(1) −

1

n
is a function based on complete

sufficient statistic and also unbiased for µ, which means it is the MVUE for µ.
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